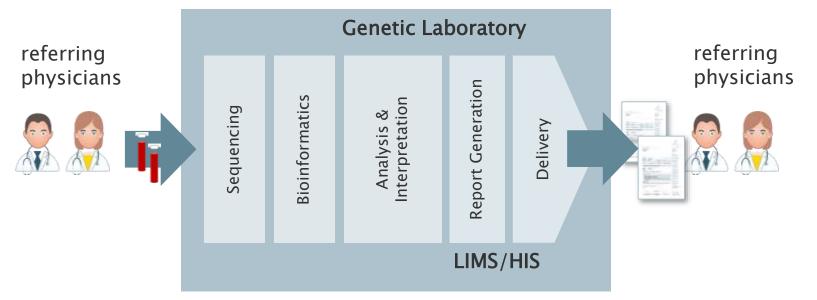


Who we are

- founded 2021
- located at Frankfurt Innovation Center Germany
- highly qualified team players with background in
 - Software Development
 - Bioinformatics
 - Human Genetics

Our goal:


Support implementation of genetic diagnostics into clinical practice

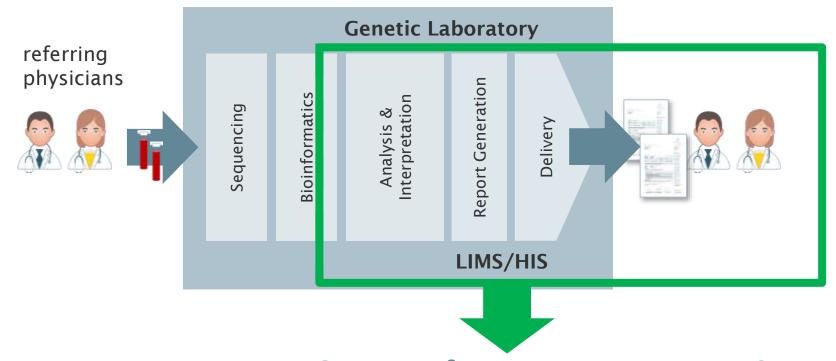
Our offer:

IT-tools and services
for management and curation of clinically
relevant interpretations of genetic variants.
Creation of a virtual space for a human "Interpretome"

We are bridging the gap between genetic knowledge and clinical implementation

Genetic Diagnostics: Workflow

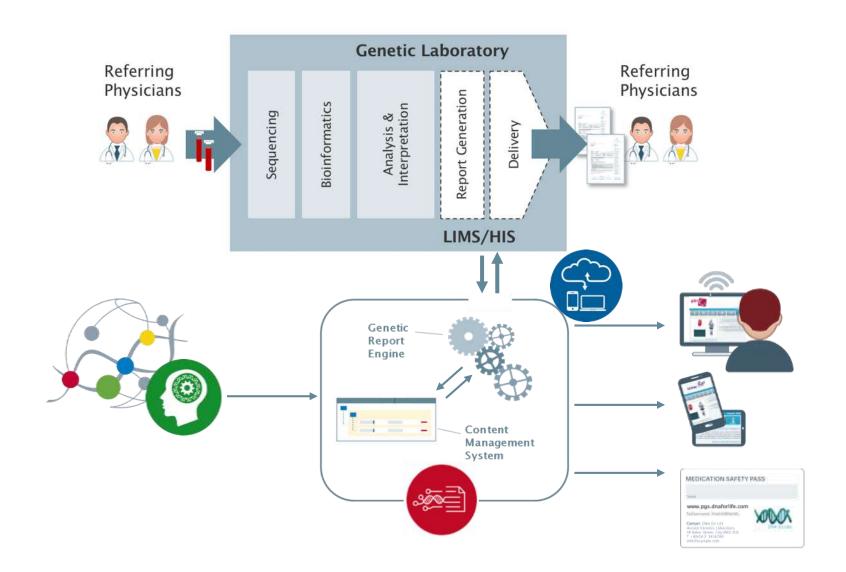
Problem: highly fragmented manual processes consuming time & money



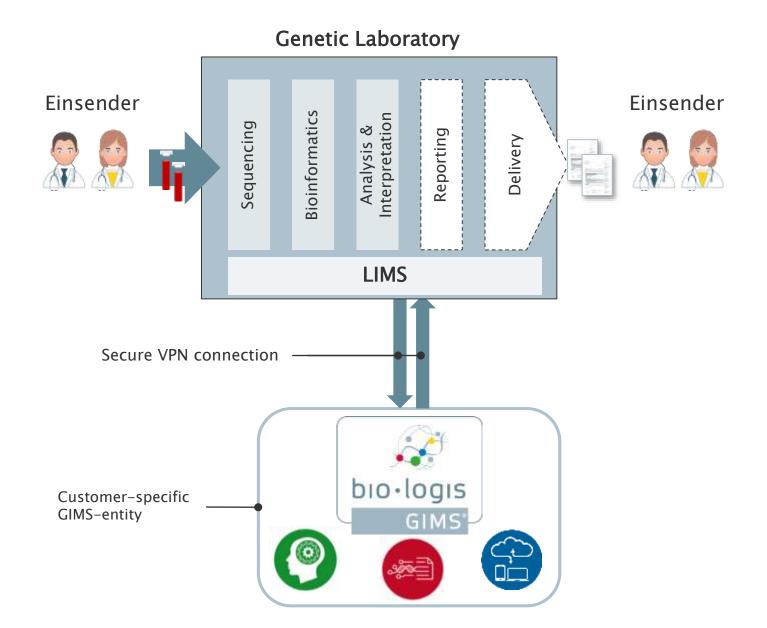
actually NO ONE workflow available for processing of complex genetic diagnostics

bio.logis delivers the solutions to overcome this situation stepwise

Genetic Diagnostics: Workflow



Genetic Information Management System



GIMS®: Genetic Information Management System

GIMS Integration

Genetic Information Management System

Modules

Setting new standards for DX report production

- Efficient management of medical content
- Automated production of clinical reports

certified as Medical Device

Closing the gap between interpretation and reporting

Structured documentation and sharing of genetic information for clinical decsision support

Providing seamless and secure access to results and insights

 Provision and presentation of results, background information and references via web-based applications at the Point of Care

Use case:

Pharmacogenetics

Finding the right drug and dosage for patients based on their individual genetic make-up

Why is it not used in clinical practice?

What is needed

Efficient and <u>standardized</u> translation of analysis results into clinical recommendations

Digital decision support at Point of Care

Use Case

News / Events Participating organsiations Work packages Contact

OUR FOCUS

We want to improve the safety and efficacy of pharmacotherapy for every European patient by enabling clinical pharmacogenomics

SHARED EUROPEAN GUIDELINES

Maintenance and dissemination of pharmacogenomics guidelines in the IMPLEMENTATION AND EVALUATION

Clinical implementation and outcome evaluation of pre-emptive pharmacogenomics in a multitude of **ENABLING TECHNOLOGIES**

Development of powerful and barrierfree clinical decision support systems and novel pharmacogenomics methodologies COMMUNICATION AND **EDUCATION**

Development of a program to reach out to patients, health care professionals. regulatory agencies, politics and health indurance greanisations

- EU-funded project within the Horizon 2020 program
- Aiming to support implementation of pharmacogenomics in clinical practice
- bio.logis GIM responsible for implementing GIMS at 7 selected hospitals across Europe

Horizon 2020 European Union funding for Research & Innovation

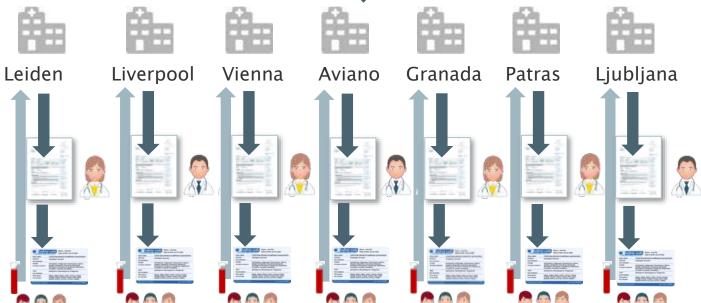
Univerza v Ljubljani

Servicio Andaluz de Salud CONSEJERÍA DE SALUD

Dosing recommendations

for: 78 drugs

based on: $\approx 50 \text{ variants}$


in: 13 genes

available: 7 languages

Standardized Genotyping

13 Genes ≈50 Variants

Genes	Allele	Major Nucleotide Variation	dbSNP RS ID	Effect on protein	Functional Status
CYP2B6	*6/*9	516G>T	rs3745274	Q172H	Decreased or Inactive
CYP2B6	*4/*16	785A>G	rs2279343	K262R	Decreased or Inactive
CYP2B6	*18	983T>C	rs28399499	1328T	Decreased or Inactive
CYP2C9	*2	430C>T	rs1799853	R144C	Decreased
CYP2C9	*3	1075A>C	rs1057910	1359L	Decreased
CYP2C9	*5	1080C>G	rs28371686	D360E	Decreased
CYP2C9	*11	1003C>T	rs28371685	R335W	Decreased
CYP2C19	*2	681G>A	rs4244285	Splicing defect	Inactive
CYP2C19	*3	636G>A	rs4986893	W212X	Inactive
CYP2C19	*4A/B	1A>G	rs28399504	MIV	Inactive
CYP2C19	*5	1297C>T	rs56337013	R433W	Inactive
CYP2C19	*6	395G>A	rs72552267	R132Q	Inactive
CYP2C19	*8	358T>C	rs41291556	W120R	Inactive or Decreased
CYP2C19	*9	431G>A	rs17884712	R144H	Decreased
CYP2C19	*10	680C>T	rs6413438	P227L	Decreased
CYP2C19	*17	-806C>T3	rs12248560	X	Increased
		Gene duplication or		1	
CYP2D6	*xN	multiplication	х	X	Increased
CYP2D6	*3	2549delA	rs35742686	259Frameshift	Inactive
CYP2D6	*4	1846G>A	rs3892097	Splicing defect	Inactive
CYP2D6	*5	Gene deletion	x	Gene deletion	Inactive
CYP2D6	*6	1707delT	rs5030655	118Frameshift	Inactive
CYP2D6	*8	1758G>T	rs5030865	G169X	Inactive
CYP2D6	*9	2615delAAG	rs5030656	K281 deletion	Decreased
CYP2D6	*10	100C>T	rs1065852	P345	Decreased
CYP2D6	*14A/B	1758G>A	rs5030865	G169R	Decreased
CYP2D6	*17	1023C>T	rs28371706	T107I	Decreased
CYP2D6	*41	2988G>A	rs28371725	Splicing	Decreased
CYP3A5	*3	6986A>G	rs776746	Splicing defect	Inactive
CYP3A5	*6	14690G>A	rs10264272	Splicing defect	Inactive
СҮРЗАБ	*7	27131_27132insT	rs41303343	346Frameshift	Inactive
DPYD	*2A	IVS14 + 1G>A (1905+1G>A)	rs3918290	x	Inactive
DPYD	*13	1679T>G	rs55886062	1560S	Inactive
DPYD	X	2846A>T	rs67376798	D949V	Decreased
DPYD	х	1236G>A	rs56038477	E412E	Decreased
F5	х	1691G>A	rs6025	R506Q	Decreased
HLA-B	*5701	T>G	rs2395029		Tagging SNP
SLCO1B1	*5/*15/*17	521T>C	rs4149056	V174A	Decreased
TPMT	*2	238G>C	rs1800462	A80P	Inactive
TPMT	*38	460G>A	rs1800460	A154T	Inactive
TPMT	*3C	719A>G	rs1142345	Y240C	Inactive
UGT1A1	*6	211(G>A)	rs4148323	G71R	Decreased
UGT1A1	*27	686(C>A)	rs35350960	P229Q	Decreased
UGT1A1	*28/*37	A(TA)6TAA>A(TA)7TAA /A(TA)8TAA	rs8175347	x	Decreased
VKORC1	x	1173C>T (C6484T)	rs9934438		Increased sensitivity

78 active ingredients (dynamic list)

Antiarrhythmic drugs:

- Amiodarone
- Disopyramide
- Flecainide
- Kinidine
- Propafenone

Anticoagulants:

- Acenocoumarol
- Clopidrogrel
- Phenprocoumon
- Prasugrel
- Ticagrelor
- Warfarin

Antidiabetic drugs:

- Glibenclamide
- Gliclazide
- Glimepiride
- Tolbutamide

Antidepressants:

Moclobemide

NARI

Atomoxetine

SSRI

- Citalopram
- Duloxetine
- Escitalopram
- Fluoxetine
- Fluvoxamine
- Paroxetine
- Sertraline
- Venlafaxine

TCA

- Amitriptyline
- Clomipramine
- Doxepin
- Imipramine
- Mirtazapine
- Nortriptyline

Analgetics:

- Codeine
- Oxycodone
- Tramadol

beta Blockers:

- Atenolol
- Bisoprolol
- Carvedilol
- Metoprolol
- Soltalol

HIV therapy:

- Abacavir
- Efavirenz

Immunotherapy:

- Azathioprine
- Tacrolimus

Contraceptives:

 Oestrogen containing drugs

Neuroleptics:

- Aripiprazole
- Clozapine
- Flupentixol
- Fluphenazine
- Haloperidol
- Olanzapine
- Pimozide
- Quetiapine
- Risperidone
- Zuclopenthixol

PPIs:

- Esomeprazole
- Lansoprazole
- Omeprazole
- Pantoprazole
- Rabeprazole

Cholesterol-lowering drugs:

- Atorvastatin
- Fluvastatin
- Simvastatin

Tumor therapy:

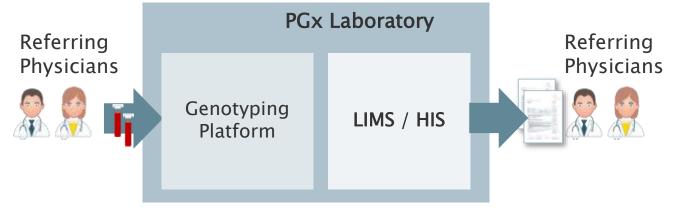
- Capecitabine
- Fluorouracil
- Gefitinib
- Irinotecan
- Mercaptopurine
- Tamoxifen
- Tegafur
- Tioguanine

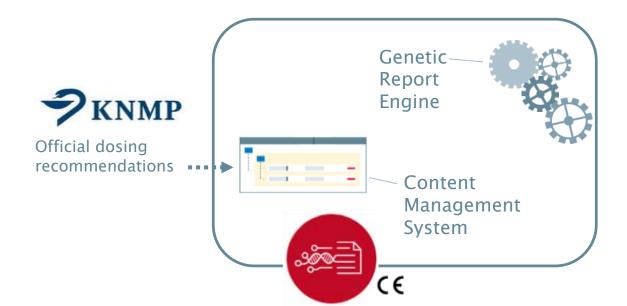
Others:

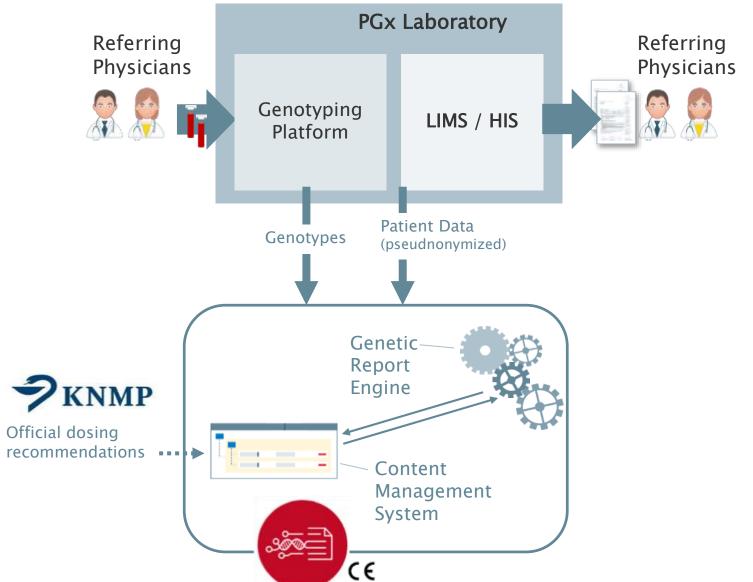
- Clonidine
- Dexmethylphenidate
- Eliglustat
- Flucloxacillin
- Methylphenidate
- Phenytoin
- Voriconazole
- Siponimod

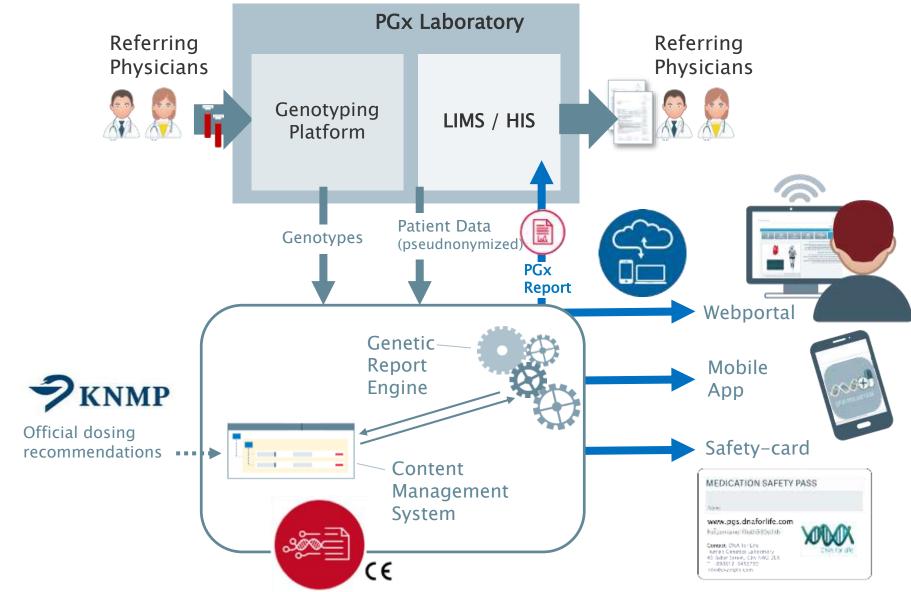
What is needed

Efficient and <u>standardized</u> translation of analysis results into clinical recommendations


Digital decision support at Point of Care


The solution


GIMS.pharma



GIMS.pharma

GIMS.pharma

The result: Knowledge for usage at the Point of Care, in real-time

- Validated and targeted clinical recommendations based on guidelines from expert groups like e. g.
 - Clinical Pharmacogenetic Implementation Consortium (CPIC)
 - Dutch Pharmacogenetics Working Group (DPWG)

Medication Safety Pass

Medication Safety Pass

Name

https://pgx-oms/webapp/ Username: xWki3S94mFe2

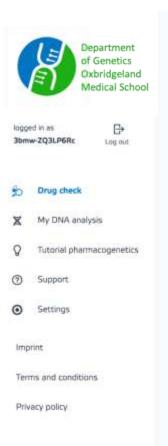
Department of Genetics Osbridgeland Medical School 46 Baker Street, City NW2 2LK

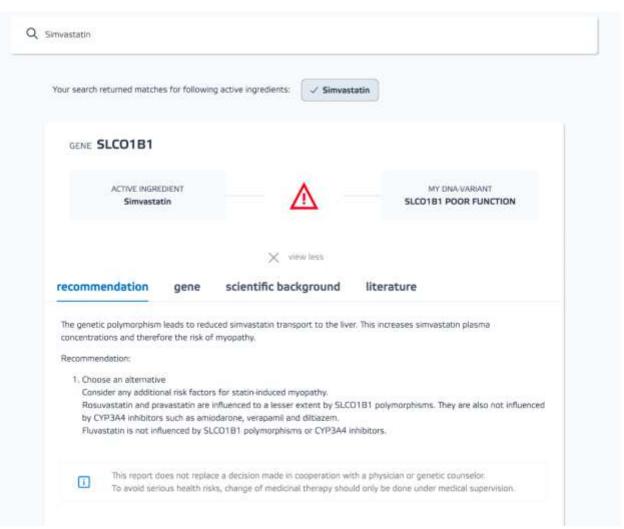
T: +99 (0)999 9999 Email: info@example.com

PLEASE NOTE

DNA variants are often responsible for too high or low efficacy of drugs and adverse events.

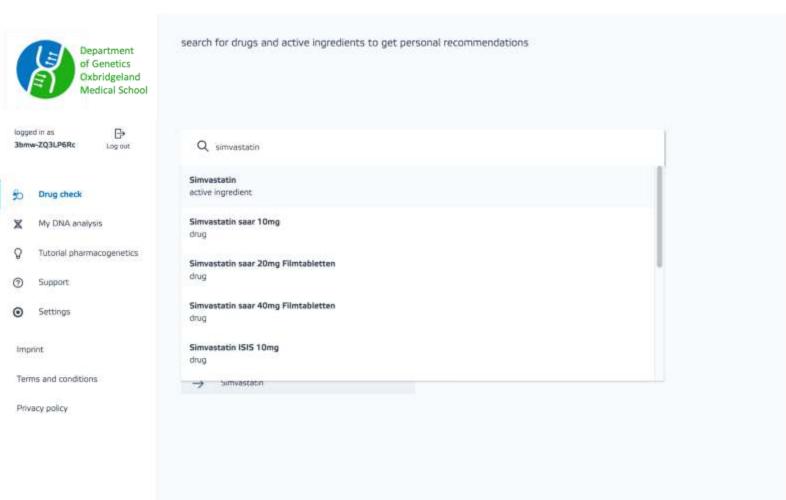
For the owner of this Medication Safety Pass DNA variants have been analyzed which may be important to consider for prescribing medication

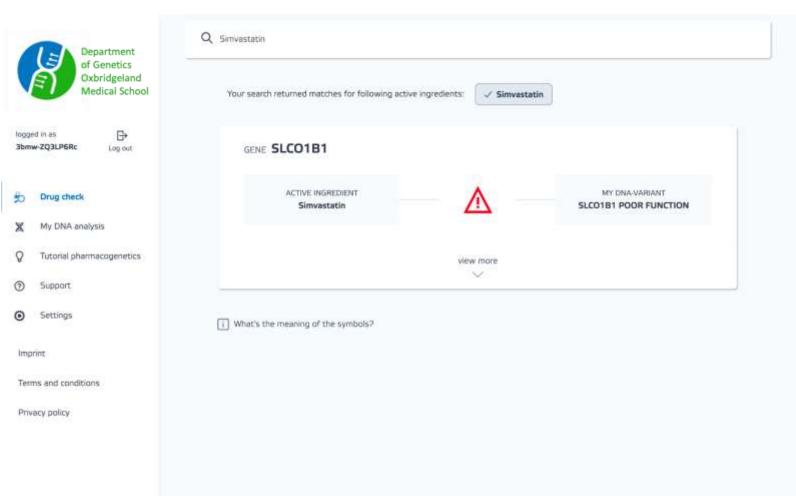


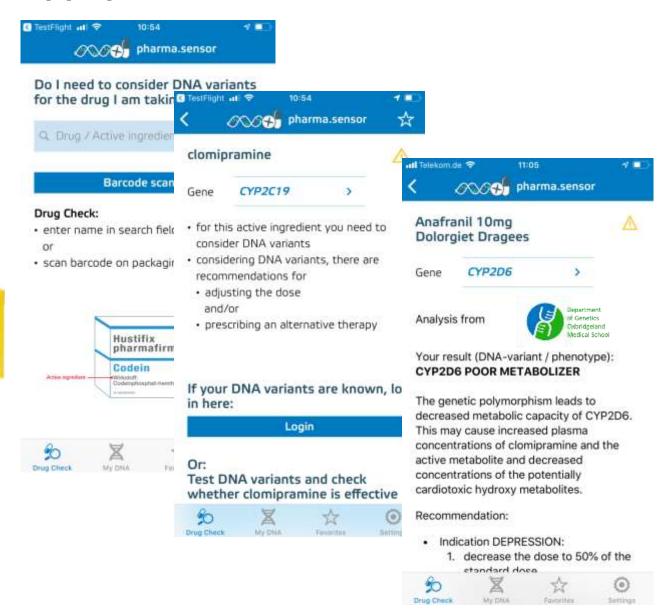

Before prescribing:

- Check if personal recommendations are to be considered
- Detailed information available
 - In personal patient account
 - Accessible by using the QR code above

Genetic Health Record

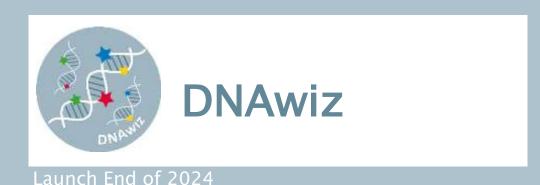



Genetic Health Record


Genetic Health Record

Mobile App: pharma.sensor

Clomipramin

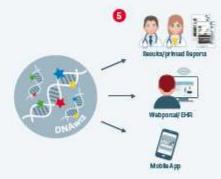

Anafranil® 10 mg (NOVARTIS

Outlook: bio.logis' new Development

A Genetic Information Management System (GIMS) for transparently traceable DNA Variant Interpretation and Report Generation

open source - for the genetics community and beyond

The solution



How It works

- OVariant list (vcf) is uploaded with standard interfaces or manually
- detected variants are listed and automatically connected with metadata from public sources
 - a) if a variant is already available in the system and trustfully classified, it can be processed automatically for generation of a report in clinical grade
 - b) to process formerly not classified variants the user is guided through variant assessment and interpretation process step by step. Decision and argumentation processes can be document and versionised
 - c) where possible, the user can also draw variant information and existing assessments from the sharing network

- completed assessments can be reviewed and approved using customizable workflows
 - a) once assessments has reached a level of maturity, user can choose to share the knowledge within the network
- Interpretations, diagnosis and recommendations are compiled in clinical reports available in multiple formats using content from databases amended with user's comments where applicable
- 6 Results can be
 - a) provided to physicians and patients as printed documents
 - b) incorporated into EHR systems or
 - c) distributed using customizable digital channels

translating DNA into health

bio.logis digital health GmbH Altenhöferallee 3 60438 Frankfurt am Main Germany info@biologis.eu

Request a Demo